Basic Oscillator Model

- Oscillator has positive feedback loop at selected frequency
- Barkhausen criteria implies that the multiplication of the transfer functions of open loop amplifier and feedback stage is $H_F(\omega)H_A(\omega) = 1$
- Barkhausen criteria aka loop gain equation

LC Oscillators – Lower RF Frequencies

LC Oscillators – Lower RF Frequencies

LC Oscillators – Lower RF Frequencies

• Can also design with BJTs.

High RF & Microwave Oscillators

- Take advantage of our knowledge of stability
- Rollett Stability Factor k < 1

Microwave Oscillator Signal Flow

(a) Sourced and loaded transistor

(b) Equivalent signal flow graph

$$b_1/b_s = \Gamma_{\rm in} / (1 - \Gamma_{\rm s} \Gamma_{\rm in})$$

Conditions of oscillation –

Unstable if:

$$\Gamma_{\rm s}\Gamma_{\rm in}=1$$
 or $\Gamma_{\rm s}\Gamma_{\rm L}=1$

Creating Oscillator Condition

- Frequently begin with common-base or common-gate configuration
- Convert common-emitter s-parameters to common-base (similarly for FETs)
- Add inductor in series with base (or gate) as positive feedback loop network to attain unstable Rollett factor k < 1

Unstable Condition – Oscillation

- Convert transistor common-base [s] to [Z]_{tr}
- $2. \quad [\mathbf{Z}]_{L} = j\omega L \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
- 3. $[\mathbf{Z}]_{Osc} = [\mathbf{Z}]_{L} + [\mathbf{Z}]_{tr}$
- 4. Convert $[\mathbf{Z}]_{Osc}$ to $[\mathbf{s}]_{Osc}$
- 5. Plot stability circles

Inductor Value for Oscillation

- Must repeat previous calculation of Rollet Factor for each value of L
- In this example

$$L = 5 \text{ nH}$$

$$s_{11} = -0.935613, s_{12} = -0.002108,$$

 $s_{21} = 1.678103, s_{22} = 0.966101$

Unstable Transistor Oscillator Design

- 1. Select potentially unstable transistor at freq
- 2. Select appropriate transistor configuration
- 3. Draw output stability circle in Γ_L plane
- 4. Select appropriate value of Γ_L to produce largest possible negative resistance at input of transistor yielding $|\Gamma_L| > 1$ and $Z_{in} < 0$
- 5. Select source tuning impedance Zs as if the circuit was a one-port oscillator by $R_S + R_{IN} < 0$ typically $R_S = |R_{IN}|/3$, $R_{IN} < 0$ and $X_S = -X_{IN}$
- 6. Design source tuning and terminating networks with lumped or distributed elements

Dielectric Resonator Oscillator (DRO)

(b) Transmission line model

DRO Networks

DR-based input matching network of the FET oscillator

Varactor Diodes (Voltage Variable Caps)

Gunn Elements For Oscillators

Gunn Oscillator with DRO

Mixer Basics

Heterodyne receiver system incorporating a mixer.

Basic mixer concept: two input frequencies are used to create new frequencies at the output of the system.

Mixing Process Spectrum

Simple Diode and FET Mixers

Compression Point and 3rd Order Intercept

Single-Ended BJT Mixer

Single-Ended BJT Mixer Design Biasing Network

Single-Ended BJT Mixer Design LO and RF Connection

Single-Ended BJT Mixer Design RF Input Matching Network

Single-Ended BJT Mixer Design Modified Input Matching for RF

Single-Ended BJT Mixer Design Completed Design

