Stub Tuner Matched RF Amplifiers

- Stub tuners can be used to match sources and load to S_{11} * and S_{22} * of the RF BJT or FET
- Either open or short circuit stubs may be used
- When using short circuit stubs, place a capacitor between the stub and ground to produce RF path to ground – Do not short directly to ground as this will affect transistor DC biasing
- High resistance $\lambda/4$ transformers or RFC's may be used to provide DC path to transistor for biasing without affecting the RF signal path

Stub Tuner Matched RF Amplifier

The BJT "Self-Bias" Configuration Is Shown Which Produces Excellent Quiescent Point Stability

Stub Tuner Matched RF Amplifier

Simpler method of bias isolation at BJT collector: C_{BP} is RF short-circuit which when transformed by the Quarter-Wave Transformer is open circuit at the Single Stub Tuner and provides DC path for the Bias Network

Design Strategy: RF Amplifiers

• Objective: Design a complete class A, single-stage RF amplifier operated at 1 GHz which includes biasing, matching networks, and RF/DC isolation.

Design Strategy: RF Amplifier

- Design DC biasing conditions
- Select S-parameters for operating frequency
- Build input and output matching networks for desired frequency response
- Include RF/DC isolation
- simulate amplifier performance on the computer

Design Strategy: Approach

For power considerations, matching networks are assumed lossless

Power Relationships

Transducer Power Gain

$$G_{T} = \frac{(1-|\Gamma_{L}|^{2})|S_{21}|^{2}(1-|\Gamma_{S}|^{2})}{|1-\Gamma_{S}\Gamma_{in}|^{2}|1-S_{22}\Gamma_{L}|^{2}}$$

Available Power Gain $(\Gamma_L = \Gamma_{out}^*)$

$$G_{A} = \frac{(1 - |\Gamma_{S}|^{2}) |S_{21}|^{2}}{|1 - |\Gamma_{out}|^{2} |1 - S_{11}\Gamma_{S}|^{2}}$$

Operating Power Gain ($\Gamma_S = \Gamma_{in}^*$)

$$G = \frac{(1-|\Gamma_L|^2)|S_{21}|^2}{|1-|\Gamma_{in}|^2||1-S_{22}\Gamma_L|^2}$$

Stability of Active Device

$$\frac{\mid \Gamma_L \mid <1, \mid \Gamma_S \mid <1}{\mid \Gamma_{in} \mid <1, \mid \Gamma_{out} \mid <1}$$
 Stability factor

$$k = \frac{1 - |S_{11}|^2 - |S_{22}|^2 + |S_{11}S_{22} - S_{12}S_{21}|^2}{2 |S_{12}| |S_{21}|}$$

or

If not unconditionally stable

Stability of Amplifiers

• In a two-port network, oscillations are possible if the magnitude of either the input or output reflection coefficient is greater than unity, which is equivalent to presenting a negative resistance at the port. This instability is characterized by

$$|\Gamma in| > 1 \text{ or } |\Gamma out| > 1$$

which for a unilateral device implies |S11| > 1 or |S22| > 1.

Stability Requirements

• Thus the requirements for stability are

$$\left|\Gamma_{\text{in}}\right| = \left|S_{11} + \frac{S_{12}S_{21}\Gamma_L}{1 - S_{22}\Gamma_L}\right| < 1$$

and
$$|\Gamma_{\text{out}}| = |S_{22} + 1| < 1$$

• These are defined by circles, called stability circles, that delimit $|\Gamma_{\rm in}|=1$ and $|\Gamma_{\rm L}|=1$ on the Smith chart.

Stability Regions: Stability Circles

• Regions of amplifier stability can be depicted using stability circles using the following:

Output stability circle:

$$r_{out} = \frac{\left|S_{12}S_{21}\right|}{\left\|S_{22}^{2}\right| - \left|\Delta\right|^{2}}, \quad C_{out} = \frac{\left(S_{22} - S_{11}^{*}\Delta\right)^{*}}{\left|S_{22}\right|^{2} - \left|\Delta\right|^{2}}$$

Input stability circle:

$$r_{in} = \frac{\left|S_{12}S_{21}\right|}{\left\|S_{11}^{2}\right| - \left|\Delta\right|^{2}}, \quad C_{in} = \frac{\left(S_{11} - S_{22}^{*}\Delta\right)^{*}}{\left|S_{11}\right|^{2} - \left|\Delta\right|^{2}}$$

Stability Regions: Stability Circles

Where:

$$\Delta = S_{11}S_{22} - S_{12}S_{21}$$

Stability Regions: Output Stability Circles

(a) Shaded region is stable, since $|S_{11}| < 1$

(a) Stable region excludes the origin, $\Gamma_L = 0$, since $|S_{11}| > 1$

Stability Regions: Input Stability Circles

Different Input Stability Regions

Dependent on ratio between r_s and $|C_{in}|$

Unconditional Stability

(b) $|\Gamma_s| = 1$ circle must reside inside

Stability circles reside completely outside $|\Gamma_S| = 1$ and $|\Gamma_L| = 1$. Rollet Factor:

 $k = \frac{1 - \left| S_{11} \right|^2 - \left| S_{22} \right|^2 + \left| \Delta \right|^2}{2 \left| S_{12} \right| \left| S_{21} \right|} > 1$

Constant Gain Amplifier

$$G_{TU}(dB) = G_S(dB) + G_0(dB) + G_L(dB)$$

Constant Gain Circles in the Smith Chart

To obtain desired amplifier gain performance

$$G_{S \max} = \frac{1}{1 - |S_{11}|^2}$$

$$g_S = \frac{G_S}{G_{S \max}} = \frac{1 - |\Gamma_S|^2}{|1 - \Gamma_S S_{11}|^2} (1 - |S_{11}|^2)$$

normalize

$$G_{L \max} = \frac{1}{1 - |S_{22}|^2}$$

$$g_L = \frac{G_L}{G_{L \max}} = \frac{1 - |\Gamma_L|^2}{|1 - \Gamma_L S_{22}|^2} (1 - |S_{22}|^2)$$

$$g_i = \frac{G_i}{G_{i\text{max}}} = \frac{1 - |\Gamma_i|^2}{|1 - \Gamma_i S_{ii}|^2} (1 - |S_{ii}|^2)$$
 This can be written as a circle equation

Circle Equation and Graphical Display

Constant source gain circles Constant load gain circle

See Ex. 9.7

Gain Circles

- Max gain $\Gamma_{\rm imax} = 1/(1-|S_{ii}|^2)$ when $\Gamma_{\rm i} = S_{ii}^*$; gain circle center is at $d_{gi} = S_{ii}^*$ and radius $r_{gi} = 0$
- Constant gain circles have centers on a line connecting origin to S_{ii} *
- For special case $\Gamma_i = 0$, $g_i = 1 |S_{ii}|^2$ and $d_{gi} = r_{gi} = |S_{ii}|/(1 + |S_{ii}|^2)$ implying $\Gamma_i = 1$ (0 dB) circle always passes through origin of Γ_i plane

Trade-off Between Gain and Noise

Maximum gain and minimum noise figure are mutually exclusive

Noise figure

Constant gain

