Stepped Impedance Low-Pass Filter

- Relatively easy (believe that?) low-pass implementation
- Uses alternating very high and very low characteristic impedance lines
- Commonly called Hi-Z, Low-Z Filters
- Electrical performance inferior to other implementations so often used for filtering unwanted out-of-band signals

Approximate Equivalent Circuits for Short Transmission line Sections

• Using Table 4-1, approximate equivalent circuits for a short length of transmission line with Hi-Z or Low-Z are found

Approximate Equivalent Circuits for Short Transmission line Sections

• The equivalent circuits are:

T-Equialent circuit for transmission line section $\boldsymbol{b} \ l << \pi \ / \ 2$

Equialent circuit for small b l and large Z_o

Equialent circuit for small b l and small Z_o

Approximate Equivalent Circuits for Short Transmission line Sections

- Series inductors of a low-pass prototype replaced with Hi-Z line sections ($Z_o = Z_h$)
- Shunt capacitors replaced with Low-Z line sections $(Z_o = Z_l)$
- Ratio Z_h/Z_l should be as high as possible

$$\boldsymbol{b}l = \frac{LR_g}{Z_h} \quad \text{(inductor)}$$

$$\boldsymbol{b}l = \frac{CZ_l}{R_g}$$
 (capacitor)

Stepped Impedance Low-Pass Filter

- Select the highest and lowest practical line impedance; e.g. the highest and lowest line impedances could be 150 and 10 Ω , respectively
- For example, given the low-pass filter prototype, solve for the lengths of the microstriplines:

$$l_{Ln} = g_n \frac{Z_{low}}{R_g \boldsymbol{b}}$$
 ; $l_{Cn} = g_n \frac{R_g}{\boldsymbol{b} Z_{high}}$

Stepped Impedance Low-Pass Filter - Implementation

6th Order Low-Pass Filter Prototype

Stepped Impedance Implementation

Microstripline Layout of Filter

Bandstop Filter

- Require either maximum or minimal impedance at center frequency f_o
- Let line lengths $l = I_o/4$
- Let $\Omega = 1$ cut-off frequency of the lowpass prototype transformed into upper and lower cut-off frequencies of bandstop filter via **bandwidth factor**:

$$bf = \cot\left(\frac{\boldsymbol{p}}{2}\frac{\boldsymbol{w}_L}{\boldsymbol{w}_o}\right) = \cot\left[\frac{\boldsymbol{p}}{2}\left(1 - \frac{sbw}{2}\right)\right] \quad ; \quad sbw = \frac{(\boldsymbol{w}_U - \boldsymbol{w}_L)}{\boldsymbol{w}_o}$$

Bandstop Filter: Implementation

- 1. Find the low-pass filter prototype
- 2. The *L*'s and *C*'s replaced by open and short circuit stubs, respectively as in Low-Pass filter design with

$$Z_{Ln} = (bf) g_n$$
 and $Y_{Cn} = (bf) g_n$

- 3. Unit lengths of $I_o/4$ are inserted and Kuroda's Identities are used to convert all series stubs into shunt stubs
- 4. Denormalize the unit elements

Coupled Filters: Bandpass

• Even and Odd mode excitations resulting in

$$Z_{Oe} = \frac{1}{v_{pe}C_e}$$
 ; $Z_{Oo} = \frac{1}{v_{po}C_{od}}$

Coupled Filters: Even & Odd Impedances

Bandpass Filter Section

(a) Arrangement of two microstrip lines

(b) Transmission line representation

$$Z_{in} = \frac{1}{2\sin(\mathbf{b}l)} \sqrt{(Z_{Oe} - Z_{Oo})^2 - (Z_{Oe} + Z_{Oo})^2 \cos^2(\mathbf{b}l)}$$

Bandpass Filter Section

• According to Figure 5-47, the characteristic bandpass filter performance attained when

$$l = 1 /4 \text{ or } b l = p /2$$
.

Bandpass Filter Section

The upper and lower frequencies are

$$(\boldsymbol{b}l)_{1,2} = \boldsymbol{q}_{1,2} = \pm \cos^{-1} \left[\frac{Z_{Oe} - Z_{Oo}}{Z_{Oe} + Z_{Oo}} \right]$$

Bandpass Filter: Implementation

- Find the low-pass filter prototype
- Identify normalized bandwidth, uper, and lower frequencies

$$BW = \frac{\mathbf{w}_U - \mathbf{w}_L}{\mathbf{w}_O}$$
 Allowing:

$$J_{0,1} = \frac{1}{Z_O} \sqrt{\frac{\mathbf{p}BW}{2g_Og_1}}; \quad J_{i,i+1} = \frac{1}{Z_O} \frac{\mathbf{p}BW}{2\sqrt{g_ig_{i+1}}}; \quad J_{N,N+1} = \frac{1}{Z_O} \sqrt{\frac{\mathbf{p}BW}{2g_Ng_{N+1}}}$$

Bandpass Filter: Implementation

• This allows determination of the odd and even characteristic line impedances:

$$Z_{Oo}|_{i,i+1} = Z_O \left[1 - Z_O J_{i,i+1} + \left(Z_O J_{i,i+1} \right)^2 \right]$$

and

$$Z_{Oe}|_{i,i+1} = Z_O \left[1 + Z_O J_{i,i+1} + (Z_O J_{i,i+1})^2 \right]$$

• Indices i, i+1 refer to the overlapping elements and Z_O is impedance at ends of the filter structure

Bandpass Filter: Implementation

- Determine line dimensions and *S* and *W* of the coupled lines from the graph on Figure 5-45 p256.
- Length of each coupled line segment at the center frequency is 1/4.
- Normalized frequency is

$$\Omega = \frac{\mathbf{W}_c}{\mathbf{W}_U - \mathbf{W}_L} \left(\frac{\mathbf{W}}{\mathbf{W}_c} - \frac{\mathbf{W}_c}{\mathbf{W}} \right)$$