Transmission Line Analysis

• Propagating electric field

Space factor

$$E_X = E_{0X} \cos(\mathbf{w}t - kz)$$

Time factor

Phase velocity

$$v_p = \mathbf{1} \ f = \frac{1}{\sqrt{\mathbf{em}}} = \frac{c}{\sqrt{\mathbf{e}_r}}$$

Traveling voltage wave

$$V(z,t) = E_{0X} \frac{\sin(\mathbf{w}t - kz)}{k}$$

High frequency implies spatial voltage distribution

- Voltage has a time and space behavior
- Space is neglected for low frequency applications
- For RF there can be a large spatial variation

Generic way to measure spatial voltage variations

• For low frequency (1MHz) Kirchhoff's laws apply

For high frequency (1GHz)
 Kirchhoff's laws do not
 apply anymore

Kirchhoff's laws on a microscopic level

 Over a differential section we can again use basic circuit theory

 Model takes into account line losses and dielectric losses

 Ideal line involves only L and C

Example of transmission line: Two-wire line

 Alternating electric field between conductors

 alternating magnetic field surrounding conductors

 dielectric medium tends to confine field inside material

Example of transmission line: Coaxial cable

- Electric field is completely contained within both conductors
- Perfect shielding of magnetic field
- TEM modes up to a certain cut-off frequency

Example of transmission line: Microstip line

EEE194RF_L3

Triple-layer transmission line

Conductor is completely shielded between two ground planes

Cross-sectional view